Chem. Ber. 111, 379-387 (1978)

Optisch aktive Übergangsmetall-Komplexe, L¹⁾

Arylrotation in C₅H₅(CO)₂Mo-Thioamidato-Komplexen

Henri Brunner*, Elisabeth Bauer und Joachim Wachter

Institut für Chemie der Universität Regensburg, Universitätsstr. 31, D-8400 Regensburg

Eingegangen am 4. April 1977

In den Thioamidato-Komplexen $C_5H_5(CO)_2MoSC(R)NR'$ mit $R' = CH_3$, C_6H_5 , $CH(CH_3)_2$, $CH_2C_6H_5$,(S)-CH(CH₃)(C_6H_5), in denen R ein o-substituierter Aromat (2-CH₃C₆H₄, 2-CH₃OC₆H₄ oder 1-Naphthyl) ist, lassen sich ¹H-NMR-spektroskopisch Atropisomere A und B nachweisen, die sich in der gegenseitigen Stellung von o-Substituent und C_5H_5 -Rest unterscheiden. Aus dem Gang der NMR-spektroskopisch bestimmten Barrieren für die NSC – Aryl-Rotation folgt, daß der große o-Substituent am Schwefelatom vorbeidreht und für die Rotationsbehinderung die Wechselwirkung des o-Wasserstoffatoms mit dem NR'-Rest ausschlaggebend ist. Dies wird durch das Verhalten des 2,6-o-disubstituierten Mesityl-Komplexes 4 und den Vergleich der Thioamidato-Komplexe mit entsprechenden Dithiocarboxylato- und Amidino-Komplexen bestätigt.

Optically Active Transition Metal Complexes, L¹⁾

Aryl Rotation in C5H5(CO)2Mo-Thioamidato Complexes

In the thioamidato complexes $C_5H_5(CO)_2MoSC(R)NR'$ with $R' = CH_3$, C_6H_5 , $CH(CH_3)_2$, $CH_2C_6H_5$, $(S)-CH(CH_3)(C_6H_5)$, in which R is an *o*-substituted aryl (2-CH_3C_6H_4, 2-CH_3OC_6H_4, or 1-naphthyl), atropisomers A and B can be shown to exist by ¹H NMR spectroscopy. The isomers differ in the mutual arrangement of the *o*-substituent and the C_3H_5 group. From the trend of the NMR spectroscopically determined barriers for the NSC – aryl rotation it follows that the large *o*-substituted mesityl complex 4 and by comparison of the thioamidato complexes with corresponding dithiocarboxylato and amidino complexes.

Einleitung

Thioamide SC(R)NHR' lassen sich unter Abgabe des NH-Protons als über S und N gebundene Chelatliganden in annähernd quadratisch-pyramidale Komplexe des Typs $C_5H_5(CO)_2MoSC(R)NR'$ einbauen¹⁻⁷⁾. Dabei wird aus dem im freien Thioamid vor-

- ²⁾ H. Brunner und J. Wachter, Chem. Ber. 110, 721 (1977).
- ³⁾ H. Brunner, K. K. Mayer und J. Wachter, Chem. Ber. 110, 730 (1977).
- ⁴⁾ H. Brunner und J. Wachter, Angew. Chem. 88, 342 (1976); Angew. Chem., Int. Ed. Engl. 15, 316 (1976).
- 5) H. Brunner, W. A. Herrmann und J. Wachter, J. Organomet. Chem. 107, C11 (1976).
- ⁶⁾ H. Brunner, Chem. Unserer Zeit, im Druck.
- 7) H. Brunner, Top. Curr. Chem. 56, 67 (1975).

¹⁾ IL. Mitteil.: M. G. Reisner, I. Bernal, H. Brunner und J. Wachter, J. Organomet. Chem. 137, 329 (1977).

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1978

liegenden E-Z-Gleichgewicht die ungünstige E-Konformation mit cis-Stellung von R und R' im Komplex fixiert^{8,9)}. Wie in allen quadratisch pyramidalen Komplexen $C_{sH_{5}}(CO)_{2}MOLL'$ mit einem unsymmetrischen Chelatliganden LL' ist das Mo-Atom auch in den Thioamidato-Komplexen C₅H₅(CO)₂MoSC(R)NR' ein Asymmetriezentrum^{6,7)}. Die beiden unterschiedlichen Konfigurationen am Zentralmetall, von denen in Schema 1 jeweils nur die (S)-Konfiguration^{1,10)} abgebildet ist, wandeln sich ineinander um, wie ¹H-NMR-spektroskopisch und polarimetrisch gezeigt werden konnte^{2, 6, 7}).

Bei der Einführung von o-substituierten aromatischen Resten kann sich der Aromat weder in den freien Thioamiden noch in den Chelatkomplexen 1-4 koplanar zur Thioamidgruppierung einstellen. Diese Tatsache wird bereits seit langem zur Bestimmung der Barrieren für die Arylrotation in entsprechend substituierten Aromaten benutzt^{11,12}). Für die Komplexe 1-3 in der (S)-Konfiguration am Mo-Atom ergeben sich bei Annahme senkrechter Orientierung des Arylrestes gegenüber dem Chelatring die Konformations-

⁸⁾ W. Walter und E. Schaumann, Chem. Ber. 104, 3361 (1971).

⁹⁾ W. Walter und G. Maerten, Liebigs Ann. Chem. 712, 58 (1968). ¹⁰⁾ I. Bernal, S. J. La Placa, J. Korp, H. Brunner und W. A. Herrmann, Inorg. Chem., im Druck.

¹¹⁾ H. Kessler, Angew. Chem. 82, 237 (1970); Angew. Chem., Int. Ed. Engl. 9, 219 (1970).

¹²⁾ A. Mannschreck, V. Jonas und B. Kolb, Angew. Chem. 85, 994 (1973); Angew. Chem., Int. Ed. Engl. 12, 909 (1973).

isomeren A und B, die sich in der Stellung des o-Substituenten X in R und des C_5H_5 -Restes unterscheiden, wie in Schema 1 für 1 und 2 gezeigt. Die gegenseitige Umwandlung der Isomeren A und B in 1, 2 und 3 durch Rotation des Arylrestes sollte in Abhängigkeit von den Substituenten R und R' untersucht werden.

¹H-NMR-spektroskopische Untersuchungen

Die ¹H-NMR-Spektren (Tab. 1) der Thioamidato-Komplexe 1-4 werden durch die Chiralität der Moleküle (Chiralitätsachse im Thioamidliganden in 1-3 und Asymmetriezentrum am Mo-Atom in 1-4) geprägt^{2,4}). Deshalb erscheinen die diastereotopen Protonen der *N*-Benzylgruppe in **1d** und **3d** bei 33°C in CDCl₃-Lösung als AB-System. Die Methylgruppen in den *N*-Isopropylkomplexen **1c** und **3c** ergeben entsprechend zwei Dubletts, die für **1c** in CDCl₃-Lösung erst beim Abkühlen unter 10°C auftreten. In [D₆]Benzol bzw. [D₈]Toluol bei 33 bzw. 25°C vergrößert sich diese Aufspaltung beträchtlich (Tab. 1). In den *N*-[(S)-1-Phenylethyl]-Komplexen **1e**, **2e** und **3e** liegen Diastereomerengemische vor, deren Komponenten sich außer bei den aromatischen Protonen in sämtlichen Signalen signifikant unterscheiden. Für die ¹H-NMR-Untersuchungen wurden nur die durch fraktionierte Kristallisation erhaltenen optisch reinen (+)₃₆₅-Isomeren verwendet²), die wie das röntgenographisch untersuchte Acetamido-Derivat (S)-Konfiguration am Mo-Atom aufweisen dürften^{1, 2)}.

Die Einstellung des Arylrestes R relativ zum Cyclopentadienylrest läßt sich in den Komplexen 1 und 2 an den 2-CH₃- bzw. 2-OCH₃-Protonen verfolgen. Bei 33°C zeigen die Komplexe 1a-d und 2e jeweils ein scharfes Singulett für die Arylmethylprotonen, während das stark verbreiterte Methylsignal von 1e erst beim Aufwärmen zu einem scharfen Singulett wird. In den ¹H-NMR-Tieftemperaturgrenzspektren der Komplexe 1c - e und 2e treten je zwei CH₃-Signale mit Unterschieden in der chemischen Verschiebung von 4.9 Hz für 1e bzw. 10-13 Hz für die übrigen Verbindungen auf. Aufgrund sterischer Wechselwirkungen im Molekül^{2,4,5)} ist ein Isomeres zum Teil deutlich bevorzugt, wie aus den Gleichgewichtskonstanten K in Tab. 2 hervorgeht. Die Signale der begünstigten Isomeren erscheinen dabei gegenüber denen der weniger begünstigten Isomeren wechselweise bei höherem oder tieferem Feld (Tab. 1). Keine Aufspaltung bis -88 °C tritt in den N-Methyl- und N-Phenylkomplexen 1a und 1b auf, jedoch verbreitert sich beim Abkühlen in 1a das 2-CH₃-Ar-Signal deutlich im Vergleich zum NCH₃-Signal. Die Methylarylsignale im Mesitylkomplex 4 liefern in CDCl₃-Lösung bei Raumtemperatur drei Singuletts, während in $[D_7]DMF$ die Methylsignale in den Positionen 2 und 4 zu einem gemeinsamen Singulett überlagern. Der Unterschied der chemischen Verschiebung von 2-CH₃ und 6-CH₃ beträgt bei 33 °C 13.1 Hz und nimmt beim Erwärmen unter geringfügiger Linienverbreiterung auf 12.4 Hz ab. Die Verbindungen 2a-d wurden nicht näher untersucht, da hier gegenüber den entsprechenden Komplexen 1a-d noch niedrigere Aktivierungsenthalpien zu erwarten waren. Ähnliche Ligand-Ligand-Wechselwirkungen wurden in Palladium- und Cobalt-Komplexen gefunden¹³⁻¹⁵⁾.

o-Methylphenyl-, o-Methoxyphenyl- und 1-Naphthylrest beeinflussen andererseits durch ihre unterschiedliche Orientierung die Cyclopentadienylprotonen. So kommt es

¹³⁾ J. W. Faller und M. J. Incorvia, J. Organomet. Chem. 19, P13 (1969).

¹⁴⁾ J. W. Faller und M. J. Mattina, Inorg. Chem. 11, 1296 (1972).

¹⁵⁾ Y. Nakano und H. Seki, Chem. Lett. 1976, 611.

			Tab. 1	I. ¹ H-NM	R-Spektre	t-Wer: τ-Wer	te (TMS bzv	w. OMS intern) u	nd Multiplizitäten ^{b)}
Verb.		∶H₃ ^{e)}	CH ₃ -Ar	CH ₃ O	CH ₃ N	СН	C ₅ H ₅	CH _{Arom.}	Bemerkungen ^{d)}
-			r G		5		22 4		
13			7.84		7.00	1	4.30 4.47	m2.70	CD.Cl.; I-00 CD.Cl.; T-60
15		I	8.07	ł	ł	I	4.54	^m 3.44 – 2.85	CDC1, T-60
•		I	8.01	1	I	I	4.43	m3.34-2.77	CD_2CI_2 ; T-60
16		² 9.01	7.80	I	I	⁷ 6.41	4.52	^m 2.94	CDCI ₃ ; T-60
		² 9.01	7 <i>.</i> 77	I	I	$^{7}6.38$	4.40	^m 2.80	CD ₂ Cl ₂ ; WH-90, 26°C
		² 9.02 ² 8.97	A 7.80 B 7.74	I	I	76.38	4.33 4.35	т2.80	CD ₂ Cl ₂ ; WH-90,40°C
		² 9.02 ² 9.35	7.94	I	Ι	76.60	5.02	m3.17	[D ₆]Benzol; T-60
1d		ł	7.74	I	ł	5.92 ^{e)} 5.39	4.97	^m 2.87	CDCl ₃ ; T-60
		I	7.74	I	I	5.85° 5.35	4.90	m2.77	CD ₂ Cl ₂ ; T-60
		I	A 7.60 B 7.83	I	ļ	0	4.79 4.97	m2.77	CD_2Cl_2 ; T-60, -55°C
le		² 8.60	A 7.76 B 7.62	I	I	45.31	5.14	m2.77	CDCl ₃ ; WH-90, 26°C
2e		28.57	ł	6.14	ţ	()	5.17	m2.74	CDCl ₃ ; T-60
	A A	² 8.41 ² 8.66	I	6.20 6.00	I	()	5.13 5.11	^m 2.74	CDCl ₃ ; T-60, -40°C
3a	2	20.0	I		7.00	į	4.42	^m 2.87 - 2.14	CDCl ₃ ; T-60
		I	ļ	I	7.19	I	4.76	^m 2.99 – 2.32	$CD_2Cl_2/[D_8]Toluol (1:1); T-60$
		I	I	ł	7.19	ł	A 4.78 B 4.73	^m 2.99 - 2.32	$CD_{2}Cl_{2}/[D_{8}]Toluol (1:1); T-60, -75^{\circ}C$
3b		1	I	1	I	I	4,44	m3.15-2.14	CDCl ₃ ; T-60
		1	I	I	I	I	4.40	m3.40-2.09	CD_2Cl_2 ; T-60

382

Verb.	CH ₃	c) CH ₃ -Ar	CH ₃ O	CH ₃ N	СН	C ₅ H ₅	CH _{Arom.}	Bemerkungen ^{d)}
3c	.6 ²	01	Ι	+	76.37	A 4.39 B 4.36	^m 2.77 – 2.11	CDCl ₃ ; T-60
	A, B ² 9. B ² 9. B ² 9.	38 09 – 12	I	Ţ	76.54	A 4.93 B 4.90	^m 3.01-2.03	[D ₈]Toluol; WH-90, 25°C
9q	ł	1	I	I	5.89 ^{e)} 5.42	4.90	™3.09 – 2.12	CDCl ₃ ; T-60
	ł	ł	ł	I	6.12 ^{e)} 5.65	5.24	^m 3.41 – 2.43	CDCl ₃ /[D ₈]Toluol (1:1); T-60
	Ι	I	Ι	I	G	A 5.19 B 5.28	^m 3.41 – 2.43	$CDCl_{3}/[D_{8}]Toluol (1:1); T-60, -40^{\circ}C$
3e	A 28. B 28.	69 61 –	I	I	(j	5.08 5.05	^m 2.29 – 2.87	CDCl ₃ ; WH-90, 25°C
	B 28.	.89 85 –	Ι	I	()	5.59 5.50	^m 2.87	[D ₈]Toluol; T-60
4	Ι	7.79 7.83 7.97 ^{s)}	I	7.06	ļ	4.47	^m 3.24	CDCl ₃ ; T-60
		7.89 8.10 ^{€)}	I	7.10	ł	4.31	^m 3.24	[D,]DMF; T-60
^{a)} Die Signé	vlintensität	ten stimmen mit e	den angeg	ebenen Str	ukturen ül	berein. Die Z	uordnung der Sig	gnale zu den Isomeren A und B ist willkürlich.

^{b)} Hochgestellte Ziffern vor den τ -Werten: m = Multiplett mit angegebenem Schwerpunkt; keine Angaben: Singulett.

^{c)} Phenylethyl- bzw. Isopropylrest; $J(CH_3-CH) = 6.5 - 7 \text{ Hz}$.

^{d)} Lösungsmittel; Geräte: Varian T-60 und Bruker WH-90; Meßtemperatur 33°C, wenn nicht anders angegeben.

^{e)} Benzylrest; geminale Kopplungskonstante J = 13.5 Hz.

⁽¹⁾ Überlagerung durch andere Signalgruppen. ⁸⁾ Zuordnung siehe Text.

Tab. 1 (Fortsetzung)

beim Abkühlen der Lösungen auf -80 °C zu einer Aufspaltung der C₅H₅-Signale in 1c, 1d, 2e und 3a,c-e in je zwei Singuletts unterschiedlicher Intensität (Tab. 1), die in 1e trotz der deutlichen Trennung der CH₃-Signale ausbleibt. Bei der vergleichsweise geringen Aufspaltung von 1-2 Hz in den C₅H₅-Signalen der Komplexe 1a-e und 2e werden zur Untersuchung der beim Erwärmen auftretenden Koaleszenzen die Arylmethylsignale herangezogen. Fehlen diese, wie in 3a, c-e, kann die Aufspaltung der C₅H₅-Signale durch Zusatz von [D₈]Toluol zur CD₂Cl₂-Lösung verbessert werden, z. B. bei 3e von 1.9 auf 3.4 Hz. 3b zeigt als einziger Naphthylkomplex bis -80 °C keine auffällige Änderung seines Spektrums. Auch an den Methyl- und Methinprotonen der Isopropyl-, Benzyl- und Phenylethylgruppe lassen sich Aufspaltungen beobachten, die jedoch aufgrund von Überlagerungen nicht zu weiteren Interpretationen herangezogen werden können.

Die Koaleszenzdaten wurden aus folgenden Parametern bestimmt (Tab. 2): T_c = Koaleszenztemperatur; b_E = Eigenbreite; Δv = chemische Verschiebung (auf die Koaleszenztemperatur extrapoliert); K = Gleichgewichtskonstante und k = Geschwindigkeitskonstante. Mit Hilfe der Eyring-Gleichung läßt sich daraus die freie Aktivierungsenthalpie berechnen¹⁶⁻¹⁸.

Verb.	<i>T</i> _c [K]	b _E [Hz]	Δν [Hz]	K	k ^{a)} [s ⁻¹]	$\Delta G^{\pm a}$ [kcal/mol]	Lösungsmittel
1 c	289	1.2	5.27	0.27	2.00 ^{b)} 0.54 ^{c)}	16.5 ^{b)} 17.2 ^{c)}	$CD_2Cl_2^{(d)}$
1 d	246	2.5	12.5	0.63	13.78 ^{b)}	13.0 ^{b)}	CD_2Cl_2
1 e	313	1.1	8.5	0.52	7.07 ^{b)} 3.64 ^{c)}	17.2 ^{b)} 17.6 ^{c)}	CDCl ₃
2 e	264	1.8	9.3	0.27	4.09 ^{b)} 1.12 ^{c)}	14.7 ^{b)} 15.3 ^{c)}	CDCl ₃
3a	226	1.2	3.09	0.54	2.69 ^{b)} 1.46 ^{c)}	12.6 ^{b)} 12.9 ^{c)}	$CD_2Cl_2/[D_8]$ Toluol 1:1
3c	321	0.5	1.85	0.55	1.50 ^{b)} 0.82 ^{c)}	18.6 ^{b)} 19.0 ^{c)}	$CDCl_3/[D_8]$ Toluol 1:1
3 d	272	1.1	5.1	0.59	4.90 ^{ь)} 2.87 ^{с)}	15.0 ^{ъ)} 15.3 ^{с)}	$CDCl_3/[D_8]$ Toluol 1:1
3e	336	0.6	2.6	0.55	4.32 ^{b)} 2.31 ^{c)}	18.8 ^{b)} 19.2 ^{c)}	[D ₈]Toluol

Tab. 2. Koaleszenzdaten und freie Aktivierungsenthalpien

^{a)} Fehlergrenzen: $k \pm 1 [s^{-1}], \Delta G^* \pm 0.3 [kcal/mol].$

^{b)} Umwandlung $A \rightarrow B$.

^{c)} Umwandlung $B \rightarrow A$.

^{d)} Herrn T. Burgemeister danken wir für die Durchführung der Koaleszenzmessung.

Diskussion

Die Umwandlung der Konformationsisomeren A und B in den Komplexen 1-3erfolgt durch Rotation um die Achse NSC-Aryl und nicht durch Inversion am Metall-

¹⁶⁾ H. G. Schmid, H. Friebolin, S. Kabuß und R. Mecke, Spectrochim. Acta 22, 623 (1966).

¹⁷⁾ A. Jaeschke, H. Münsch, H. G. Schmid, H. Friebolin und A. Mannschreck, J. Mol. Spectrosc. 31, 14 (1969).

¹⁸⁾ H. Friebolin, W. Faißt, S. Kabuß und H. G. Schmid, Org. Magn. Reson. 1, 147 (1969).

zentrum, da die Aktivierungsenthalpien (Tab. 2) mit Werten <12 kcal/mol für 1b und 3b bis zu 19.2 kcal/mol für 3e weit unter den für die metallzentrierte Umlagerung erforderlichen Aktivierungsschwellen liegen^{2,4)}. Der Vergleich der ΔG^* -Werte (Tab. 2) ergibt bezüglich der Rotationsbehinderung eine geringfügige Abnahme in der Reihenfolge der rotierenden Arylreste: 1-C₁₀H₇ > o-CH₃C₆H₄ > o-CH₃OC₆H₄, sowie eine deutliche Abnahme in der Reihenfolge der Substituenten R am Stickstoff: CH(CH₃)C₆H₅ > CH(CH₃)₂ > CH₂C₆H₅ > CH₃ > C₆H₅.

Diese Beobachtungen legen folgende Deutung nahe. Der große 2-Substituent, CH_3 in 1, OCH_3 in 2 bzw. die CH-Gruppe in 3, passiert bei der NSC-Arylrotation das Schwefelatom, die unsubstituierte Seite mit dem Wasserstoffatom 6-H den NR'-Rest. Die Rotationsbehinderung erfolgt dabei in erster Linie über die Wechselwirkung 6-H/NCHYZ.

Bei der Röntgenstrukturanalyse des Thioacetamidato-Derivats $C_5H_5(CO)_2MoSC$ - $(CH_3)NCH(CH_3)(C_6H_5)$ hatte sich gezeigt, daß die CH-Gruppe des (S)-1-Phenylethylrestes, vom Mo-Atom wegweisend, in der Ebene des Thioamidliganden liegt¹⁾. Ersetzt man in diesem Strukturmodell die CH3-Gruppe des Acetthioamids durch die Phenylgruppe des Benzthioamids, so ergeben sich für den Fall einer koplanaren Anordnung von Chelatring und Phenylrest folgende Abstände: 2-H/S = 2.3 Å, 6-H/NCH = 1.1 Å (Übergangszustand C, maßstabgetreue Wiedergabe des Chelatrings). Bei der Diskussion der Röntgenstrukturanalyse wurde darauf hingewiesen, daß auch eine Rotation des (S)-1-Phenylethylrestes um die N-CH(CH₃)(C₆H₅)-Bindung um $\pm 30-40^{\circ}$ Konformationen ohne intramolekulare Kontakte ergibt¹⁾, die kleiner als die van der Waals-Radien sind (Übergangszustand D). In diesem Fall sind die kleinsten 6-H/NCH-Kontakte bei der NSC-Phenyl-Rotation etwa 1.4 Å. Mit $Y = CH_3$ ergeben sich in dem für die Arylrotation gegenüber C günstigeren Übergangszustand D 6-H/NCH₃-Abstände von etwa 1.4 Å, was auf eine starke sterische Hinderung der Wasserstoffatome der $Y = CH_3$ -Gruppe mit 6-H hinausläuft. Der wenig behindernden 6-H/NCH-Wechselwirkung in den Methyl-, Benzyl-(bei von 6-H abgewandtem Phenylrest) und auch Phenylderivaten (bei senkrechter Einstellung des N-Phenylrings gegenüber der Chelatebene) a, d und b steht damit eine Zunahme der sterischen Hinderung in den Isopropyl- und (S)-1-Phenylethyl-Komplexen c und e gegenüber.

Während das Kohlenstoffatom einer 2-CH₃-Gruppe bei koplanarer Anordnung von Chelatring und Arylrest auf der Schwefelseite immerhin noch 2.3 Å vom S-Atom entfernt ist, sind die Abstände zwischen einer 6-CH₃-Gruppe und dem NR'-Rest so kurz, daß ein

Vorbeidrehen einer *o*-CH₃-Gruppe an NR' nicht möglich sein sollte. Dies wird durch die Untersuchung des Mesityl-Komplexes 4 gestützt, bei dem die beiden *o*-CH₃-Gruppen bis zu Temperaturen, bei denen die metallzentrierte Umlagerung einsetzt²⁾, nicht äquivalent werden, da eine von ihnen auf der stark behindernden NR'-Seite vorbei müßte.

Das Bild, daß bei der NSC – Aryl-Rotation in Thioamidato-Komplexen große *o*-Substituenten am S-Atom vorbeidrehen und die Wechselwirkung des gegenüberliegenden *o*-ständigen H-Atoms mit der NR'-Gruppe für die Rotationsbarriere ausschlaggebend ist, geht auch aus einem Vergleich der Thioamidato-Komplexe mit nicht in dieser Arbeit behandelten Dithiocarboxylato- und Amidino-Komplexen hervor: Im Dithiocarboxylato-Komplex $C_5H_5(CO)_2MoS_2C(1-Np)$, in dem die NR'-Gruppe in 3 durch ein S-Atom ersetzt ist, läßt sich für den 1-Naphthylrest keine Rotationsbehinderung feststellen¹⁹, da der *o*-Substituent am Schwefel leicht vorbei kann und die sterische Hinderung 6-H/NR'entfällt. Umgekehrt können im Fall des Amidino-Komplexes $C_5H_5(CO)_2Mo[N(C_6H_5)]_2$ - $C(2-CH_3C_6H_4)$, in dem anstelle des S-Atoms in **1b** ein NC₆H₅-Rest eingebaut ist, bei Raumtemperatur stabile Atropisomere isoliert werden²⁰. Die drastische Steigerung der Aktivierungsschwelle ist dabei darauf zurückzuführen, daß die 2-CH₃-Gruppe an keiner der beiden NC₆H₅-Gruppen vorbeikommt.

Messungen an vergleichbaren organischen Verbindungen, soweit vorhanden, bestätigen diese Vorstellungen. Nach Koaleszenzbeobachtungen sind die Rotationsbarrieren in sterisch gehinderten 1-Naphthoesäureamiden²¹⁾ sowie *N*-Methyl-*N*-(1-methyl-2-phenyl-ethyl)-3,5-dinitrobenzamid²²⁾ mit nur einem *o*-Substituenten wesentlich niedriger als in 2,6-disubstituierten Verbindungen wie *N*,*N*-Dimethyl-mesitylthioamid mit $\Delta G^{+} = 23.2 \text{ kcal/mol}^{23}$.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung und der Firma Dynamit Nobel AG für die Überlassung von (-)-(S)-1-Phenylethylamin.

Experimenteller Teil

Die Darstellung der Komplexe 1-4 erfolgte durch Umsetzung von $C_5H_5Mo(CO)_3Cl$ mit den entsprechenden Thioamiden in Pyridin bei $120^{\circ}C^{2}$ in Ausbeuten zwischen 20 und 50%. Die optisch reinen Komplexe 1e, 2e und 3e wurden durch fraktionierte Kristallisation erhalten²). Die Schmelzpunkte und analytischen Daten sind in Tab. 3 angegeben.

Die NMR-spektroskopischen Messungen wurden an den Geräten Varian T-60 bzw. Bruker WH-90 durchgeführt. Die Bestimmung der Koaleszenztemperatur erfolgte mit Proben der betreffenden Firmen (Methanol bzw. Ethylenglycol) mit einer Genauigkeit von $\pm 2\%$.

¹⁹⁾ J. Wachter, Dissertation, Univ. Regensburg 1976; E. Bauer, Zulassungsarbeit, Univ. Regensburg 1976.

²⁰⁾ H. Brunner und J. Wachter, unveröffentlicht.

²¹⁾ T. H. Siddall III und R. H. Garner, Can. J. Chem. 44, 2387 (1966).

²²⁾ T. H. Siddall III und W. E. Stewart, Chem. Commun. 1967, 393.

²³⁾ R. Rauchschwalbe, Dissertation, Univ. Regensburg 1976.

Verb.	Schmp. (°C)	Summenformel	Analyse
	p. (0)	(Molmasse) ^a	CHN
1a	128 – 129 (Zers.)	C ₁₆ H ₁₅ MoNO ₂ S (381)	Ber. 50.40 3.96 3.67 Gef. 50.46 3.83 3.66
1 b	161 – 162 (Zers.)	$C_{21}H_{17}MoNO_2S$ (443)	Ber. 56.89 3.86 3.16 Gef. 57.09 3.96 2.98
10	162-164 (Zers.)	C ₁₈ H ₁₉ MoNO ₂ S (409)	Ber. 52.81 4.68 3.42 Gef. 52.74 4.80 3.45
1 d	134 - 135	C ₂₂ H ₁₉ MoNO ₂ S (457)	Ber. 57.77 4.19 3.06 Gef. 57.93 4.23 2.87
1 e	154 (Zers.)	C ₂₃ H ₂₁ MoNO ₂ S (471)	Ber. 58.60 4.49 2.97 Gef. 58.56 4.36 2.97
2e	162 (Zers.)	C ₂₃ H ₂₁ MoNO ₃ S (487)	Ber. 56.67 4.34 2.87 Gef. 56.43 4.48 3.06
3a	162 (Zers.)	C ₁₉ H ₁₅ MoNO ₂ S (417)	Ber. 54.69 3.62 3.36 Gef. 54.82 3.80 3.25
3 b	171 – 173 (Zers.)	C ₂₄ H ₁₇ MoNO ₂ S (479)	Ber. 60.12 3.57 2.92 Gef. 60.16 3.54 3.02
3c	170 (Zers.)	C ₂₁ H ₁₉ MoNO ₂ S (445)	Ber. 56.63 4.30 3.14 Gef. 56.90 4.39 3.09
3 d	156–157 (Zers.)	C ₂₅ H ₁₉ MoNO ₂ S (493)	Ber. 60.86 3.88 2.84 Gef. 60.63 3.83 2.83
3e	139 (Zers.)	C ₂₆ H ₂₁ MoNO ₂ S (507)	Ber. 61.53 4.17 2.76 Gef. 61.45 4.24 2.75
4	180 (Zers.)	C ₁₈ H ₁₉ MoNO ₂ S (409)	Ber. 52.81 4.68 3.42 Gef. 52.95 4.56 3.29

Tab. 3. Schmelzpunkte und analytische Daten

^{a)} Sämtliche Molmassen sind massenspektrometrisch bestätigt³⁾.

[112/77]